Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds.

نویسندگان

  • Jan Benda
  • Leonard Maler
  • André Longtin
چکیده

Spike-frequency adaptation is a prominent aspect of neuronal dynamics that shapes a neuron's signal processing properties on timescales ranging from about 10 ms to >1 s. For integrate-and-fire model neurons spike-frequency adaptation is incorporated either as an adaptation current or as a dynamic firing threshold. Whether a physiologically observed adaptation mechanism should be modeled as an adaptation current or a dynamic threshold, however, is not known. Here we show that a dynamic threshold has a divisive effect on the onset f-I curve (the initial maximal firing rate following a step increase in an input current) measured at increasing mean threshold levels, i.e., adaptation states. In contrast, an adaptation current subtractively shifts this f-I curve to higher inputs without affecting its slope. As a consequence, an adaptation current acts essentially linearly, resulting in a high-pass filter component of the neuron's transfer function for current stimuli. With a dynamic threshold, however, the transfer function strongly depends on the input range because of the multiplicative effect on the f-I curves. Simulations of conductance-based spiking models with adaptation currents, such as afterhyperpolarization (AHP)-type, M-type, and sodium-activated potassium currents, do not show the divisive effects of a dynamic threshold, but agree with the properties of integrate-and-fire neurons with adaptation current. Notably, the effects of slow inactivation of sodium currents cannot be reproduced by either model. Our results suggest that, when lateral shifts of the onset f-I curve are seen in response to adapting inputs, adaptation should be modeled with adaptation currents and not with a dynamic threshold. In contrast, when the slope of onset f-I curves depends on the adaptation state, then adaptation should be modeled with a dynamic threshold. Further, the observation of divisively altered onset f-I curves in adapted neurons with notable variability of their spike threshold could hint to yet known biophysical mechanisms directly affecting the threshold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model1

The ability of neurons to adapt their responses to greatly varying sensory signal statistics is central to efficient neural coding [2, 4]. With substantial spike-rate adaptation occurring on a time scale of just tens of milliseconds, adapting neurons necessarily generate at most tens of spikes in that period. From an adaptive coding perspective, this implies that for a neuron’s adaptation to be...

متن کامل

Automatic Adaptation to Fast Input Changes in a Time-Invariant Neural Circuit

Neurons must faithfully encode signals that can vary over many orders of magnitude despite having only limited dynamic ranges. For a correlated signal, this dynamic range constraint can be relieved by subtracting away components of the signal that can be predicted from the past, a strategy known as predictive coding, that relies on learning the input statistics. However, the statistics of input...

متن کامل

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. Recent spiking neuron models like the adaptive Spike Response Model implement adaptation as additive fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation accurately models neural spiking behavior over a limited dynamic in...

متن کامل

Stochastic partial differential equations in Neurobiology: linear and nonlinear models for spiking neurons

Stochastic differential equation (SDE) models of nerve cells for the most part neglect the spatial dimension. Including the latter leads to stochastic partial differential equations (SPDEs) which allow for the inclusion of important variations in the densities of ion channels. In the first part of this work, we briefly consider representations of neuronal anatomy in the context of linear SPDE m...

متن کامل

Potentials of Evolving Linear Models in Tracking Control Design for Nonlinear Variable Structure Systems

Evolving models have found applications in many real world systems. In this paper, potentials of the Evolving Linear Models (ELMs) in tracking control design for nonlinear variable structure systems are introduced. At first, an ELM is introduced as a dynamic single input, single output (SISO) linear model whose parameters as well as dynamic orders of input and output signals can change through ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 104 5  شماره 

صفحات  -

تاریخ انتشار 2010